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Abstract

In recent years, considerable progress has been achieved in the description of natural
variability, largely due to the widespread use of scale-invariant concepts such as
fractals and multifractals. In particular, this last concept has been used to clarify
the fuzzy notion of “inhomogeneity” by introducing and quantifying the effects
of intermittency. In this paper, we present a more comprehensive approach to
multifractal data analysis and simulation that includes and combines the currently
popular singularity analysis techniques with the more traditional approach based
on structure functions. Being related to the new idea of “multi-affinity”, these last
statistics are regaining favor and constitute the proper framework to address the
problem of quantifying and qualifying yet another outstanding fuzzy notion, that
of “non-stationarity”. This is an important step because non-stationary behavior
is ubiquitous in Nature.

Using turbulence as an example, we also show how a unified multifractal for-
malism can help in extracting, from data alone, the “effective constitutive laws”
that describe phenomenologically the nonlinearities of the macroscopic transport
processes that shape the geophysical field represented by the dataset. Finally, we
argue that the essential multifractality of any natural system can be captured on
the “g = 1 multifractal plane” and describe ways in which it can be used in practical
geophysical problems.
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1. MOTIVATION AND OVERVIEW

Most data analysis techniques in usage (including the currently popular multifractal ones),
make at least implicitly stationarity assumptions about the data, viewed as a representative
realization of a stochastic process. Nature in the meantime is providing us with ample
evidence of non-stationary behavior. In the following section, we show that “multi-affinity”™?
is the proper framework when dealing with non-stationary scale-invariant processes since
directly related to structure functions. In Sec. 3 we survey multi-singularity analysis as
a means to characterize quantitatively and qualitatively intermittency. The possibilities
opened simply by connecting the two multi-scaling approaches are very promising (Sec. 4).
Finally, we synthesize our outlook with the help of the “¢ = 1 multifractal plane”.

2. MULTI-AFFINITY ANALYSIS, QUANTIFYING AND
QUALIFYING NON-STATIONARITY

2.1 Scale-invariance, Stationarity and Stationary Increments

We take ¢(z) to be a generic geophysical signal representative of either a time-series or a field
assumed, for simplicity, to be a one-dimensional probing of some kind. More specifically,
we are given N + 1 real values over the interval [0, L], sampled at rate 1/¢:

#(z), %:0,1,...,N(N=-§—). (1)

In a typical situation, the above signal is highly fluctuating, “rough”, possibly discontin-
uous. This is an indication that complicated, strongly nonlinear physical processes are at
work generating ¢(z), and the only symmetry we can reasonably posit for the system is
scale-invariance. We will therefore use scale, denoted r, as a parameter in all of our statis-
tics and seek statistically robust power-law behavior with respect to r. In sharp contrast
with mathematical models, real world systems only scale over a finite range going from
the “inner” (or “homogeneity” or “dissipation”) scale 7, to the “outer” (or “forcing” or
“integral”) scale R4. The instrumentally accessible portion of this range is [max{¢, 74},
min{L, R4}] but, for simplicity, we will take £ = 74 and L = Ry throughout the following.
Our first task is to define “stationary” features of the dataset ¢(z) to work on, with
statistical stationarity meaning in essence “invariance under translation”. The simplest
scale-dependent statistic of a stationary process is its 2-point auto-correlation function:

Gy(r) = (p(z)p(z — 7)) ~r 7l <r <L), O0<py<l1 (2a)

where (-) designates ensemble-averaging. The exponent p4 has a natural range: correlations
are generally expected to decrease with increasing separation (ug4 > 0) but too rapid decays
(pg > 1) are basically equivalent to “é-correlations”.

An even more popular 2nd order statistic is the energy spectrum E4(k):

Ey(k) = S (HERBER) ~ k(L <k <3t), 0<fo=l-pp<t (D)
+

where * designates a Fourier transform. The two statistics are closely related since G 4(r)
and E4(k) are in Fourier duality (Wiener-Khintchine theorem). In scale-invariant situations,
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this leads to the connection between the two exponents in Eqs. (2). We are more interested
in the limit, go — 0 (84 — 1), where we anticipate long-range correlations which are to be
interpreted as a symptom of non-stationarity. We will focus more specifically on processes
with 1 < B4 < 3 which are said to have “stationary increments”. Many turbulent®* or
otherwise natural®® signals are in this class.

In the up-coming subsection, we characterize the multi-scaling properties of increments
themselves over the full range of available scales, thus dealing with the non-stationarity
directly. In Sec. 3, we adopt an altogether different strategy by first deriving from ¢(z)
another field which is itself stationary and can justifiably be investigated using methods
requiring this property. This new field is required to contain the most interesting information
on ¢(z), specifically concerning its “intermittency”.

2.2 Scaling Structure Functions and Special Cases

Define the increment A¢(r; z) = ¢(z) — ¢(z — r) and consider the scaling of the struc-
ture functions:

(lAg(r; )Py ~rPN e < r <L), -1<p<oo (3)

where normalization requires that (4(0) = 0. For the lower limit on p and ways to elevate
it, see Ref. 7. Within the framework of turbulence (revisited below), (4(p) is given a formal
multifractal interpretation in Ref. 8 by using its Legendre transform. The associated D4(h)
“spectrum” is understood to be the fractal dimension of the subset of [0, L] where the local
Hélder exponent h(z) = h, this last exponent being defined in |A¢(r; z)| ~ r*(®),

Weakly variable increments ({|A¢(r; z)[?) = {|A¢(r; z)|)P) lead directly to (4(p) = pH,
in other words, simple- or mono-scaling structure functions where 0 < H < 1. The former
(H — 0) limit brings us back to stationary scaling processes. The latter (H — 1) limit
corresponds to almost everywhere differentiable processes; in particular, this case contains
noiseless trends: ¢(z) = az+b where a and b are random variables (as long as a # 0, almost
surely). If (4(p) is not linear then it is necessarily concave (C;’(p) < 0) and Hy(p) = C4(p)/p
will be a decreasing hierarchy of exponents. Two values of p have received a lot of attention.

Firstly, there exists a Fourier duality for non-stationary processes between E4(k) and

(|¢(x) ~ ¢(z — 7)|2), often referred to as the structure function. For scaling processes, this
leads to®:

Bo=2Hy(2)+12 1, (4)

where the “=” is obtained in the stationary limit (Hy(2) — 0). Beyond the opposite limit
(Hg(2) — 1), we find once differentiable functions (Bp > 3), hence 1 < 84 < 3.

Secondly, one can relate the fractal dimension Dy(4) of the graph g(¢) of ¢(z), viewed as
a self-affine!® object in 2-space, to

Hy=Hy(1) =2 - Dyyy > 0. (5)

The “=” is obtained again in the stationary (H; — 0) limit where Dy(4) = 2 (the graph
fills space). In the opposite (H; — 1) limit of almost everywhere differentiable processes,
we retrieve graphs with Dgy(g) = 1, akin to rectifiable curves. In other words, stationarity
comes with more “roughness” and discontinuity, non-stationarity with more “smoothness”
and continuity in scaling processes.



Bi-Multifractal Analysis of Non-stationary Processes 563

In contrast to the above discussed case of narrowly distributed increments (Hy(p) = H),
we can talk about “multi-affine” processes! in the more interesting cases where Hy(p)
is non-constant. We will retain H; (quite literally) as a first order quantifier of scale-
invariant non-stationarity and the whole Hy(p) hierarchy as a means to qualify it. We
provide elsewhere an illustration of these ideas using “bounded” cascade models [Ref. 11
and references therein].

3. SINGULARITY ANALYSIS, QUANTIFYING AND
QUALIFYING INTERMITTENCY

3.1 Defining a Related Measure

We wish to perform a singularity analysis of the now relatively standard type (based on a
measure) and not like in the above (Holderian) variant. We need to define a non-negative
field related to ¢(z) which should furthermore be stationary, having a well-behaved auto-
correlation function and a spectral exponent which does not exceed one. A convenient
choice is provided by:

6¢(z) = |A¢(& z)| = |6(z) - ¢(z - O)|, £<z< L, (6)

which can be described as the “absolute (small-scale) gradient field”. Other options have
been used.1?-14

The next step is to degrade the resolution of the field defined in Ref. 6. Namely, we
compute:

z' [t=z [t
ps(r; ¢) = Z §p(z'), r<z<L{U<Lr<lL), (7)
z! fl=z [l—r[L41
and let
PplTs T
ol ) = 25D, ®)

3.2 Scaling Properties and Special Cases

Consider the scalings of (e4(r; z)?) as parameterized in Ref. 15:
(ep(r; 2)7) ~ 1K@ <r <L), —c0<g<o0. 9

The exponent function K.(g) is convex with predetermined values K,(0) = K,.(1) = 0 and
weak variability, (ps(r; 2)7) = (ps(r; 2))?, yielding simply K.(¢) = 0. The multifractal
significance of K,.(q) was established in Refs. 15 and 16 by showing that its Legendre
transform yields the well-known singularity spectrum, f.(a).

Using the above parameterization, one can define the non-increasing hierarchy D.(q) =
1— K.(q)/(g—1) known as generalized or Reyni dimensions.!”!® The single most important
exponent in this whole approach is quite possibly:

C1=1-D,(1)=K'(1)> 0, (10)
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the “information” codimension. It provides us with a straightforward measure of intermit-
tency in the system, as determined by the deviation of D.(¢) or K.(q) from a constant.
The specific kind of intermittency is of course determined by the whole hierarchy D,(q).

4. GEOPHYSICAL APPLICATIONS

4.1 Effective Constitutive Laws in Scale-invariant Format

It is legitimate to ask whether or not both multifractal statistics are independent of each
other. Do (4(p) and K.(g) not convey, to some extent, the same information? We are
convinced that the answer is yes, that the system is “physically” multifractal in a unique
way. However, it is also clear that the two approaches capture only one facet each of this
deep multifractal reality and that they are best viewed as complementary, at least in absence
of any other knowledge.

Most geophysical fields of interest can be related to some globally conserved quantity
(e.g. velocity and total kinetic energy). Any macroscopic (non-local) connection between a
field ¢(z) hence (4(p), on the one hand, and its gradients é¢(z) hence K.(g), on the other
hand, is bound to be related to the transport of this quantity, from place-to-place and/or
scale-to-scale.

4.2 The Case of Fully Developed Turbulence

One instance where an extra a priori scaling relation is available — largely thanks to di-
mensional analysis — is 3D turbulence. In this problem, we can take ¢(z) = u(x = |(u)|t)
using Taylor’s frozen turbulence hypothesis in a flow with mean velocity (u). Indeed, a de-
terministic (event-per-event) interpretation of Kolmogorov’s famous (effective constitutive)
relation?

. 3
eulri )~ PUEEE <o cnecr <), ()
leads to
_P_ _P
Cu(p) = 3 K, (q 3). (12)

Note that (,(0) = 0 as required and that (u(3) = 1 as expected from Eq. (11). The
K.(p/3) term in Eq. (12) is the “intermittency” correction to the Kolmogorov’s? theory
for homogeneous turbulence (H,(p) = 1/3). Recently, Eq. (11) has been the subject of
some debate (Ref. 19 and references therein) and the consensus seems to be that it is best
interpreted in a statistical sense, that it applies extremely well on average but can fail
completely for any given event.

Returning to the case of arbitrary geophysical data, we can turn the above questions
around. Given enough high-quality data, can one extract from it such powerful relations as
Eq. (12) or even Eq. (11) using scale-invariance analysis? To this effect, we suggest a merger
of the two basic (uni-variate) multifractal statistics into a single bi-variate one. Consider
the scaling of:

(|A@(r; z)|Pey(r; x)7) ~ Xl <r <L), —1<p<oo, —00<g<oo. (13)
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In the above, we have looked at X4(p, 0) = (4(p) and X4(0, ¢) = — K.(g). It is not hard to
see that, in the unlikely situation where |A¢(r; z)| and ea4(r; z) are independent random
variables, we have X4(p, ¢) = (4(p) — K.(g). By way of contrast, the event-wise connection
in Eq. (11) implies Xu(p, ¢) = p/3 — K.(¢ + p/3) which in turn yields Eq. (12). So, in prin-
ciple, a careful bi-multifractal analysis of data can lead to the determination of important
scaling relations.

5. DISCUSSION AND CONCLUSIONS

In summary, we surveyed two multifractal data analysis techniques based on structure
functions and singular measures, yielding respectively the exponent hierarchies H(g) and
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Fig.1 The “g = 1 multifractal plane”. Notice the natural boundaries of the accessible domain, 0 < H; < 1,
0 < C1 < 1. This last limit prevents “degeneracy”,!® i.e., vanishing gradient fields in almost every realization
(now-and-then a huge spike appears to keep the average at one); see text for the others. Several well-known
models are found on these boundaries: “multiplicative® or turbulent cascade models, e.g. Ref. 9, “additive”
models such as fractional Brownian motion and “Devil’s stair-cases”.1° In contrast, typical geophysical signals
tend to live inside this domain, as illustrated by four cloud liquid water content (LWC) datasets obtained
during two different campaigns (FIRE, ASTEX). Inside we would also find the handful of multi-affine models
found in the literature [Ref. 11 and references therein].
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D(q). The latter is now a standard tool for quantifying and qualifying “intermittency”
and we argued that the former (multi-affine) technique can be used analogously for the
presently more fuzzy notion of “non-stationary”. We also merged the two approaches into a
unified bi-multifractal one. Guiding ourselves with the well-studied case of 3D turbulence,
we showed how this new concept can be used in a systematic quest for scale-invariant
“effective constitutive laws.” It is hoped that, from these, insight can be gained into the
nonlinear physical mechanisms at work generating, in particular, the geophysical signal
being processed.

In the meantime, we show in Fig. 1 some of the model- and data-based activity hap-
pening on the “g = 1 multifractal plane” where the coordinates are simply H; = H(1)
and C; = 1 — D(1). In our view, the axes measure directly the degrees of non-stationarity
(horizontally, H1) and of intermittency (vertically, C1) in the system. Non-vanishing inter-
mittency leads to multi-scaling in singular measures (as a matter of definition) and also in
structure functions (but in a non-trivial way). At this level of approximation, the rest —
what precise flavor of multifractality is present — is a matter of detail. We advocate the
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Fig. 2 (a) A sample of atmospheric liquid water density captured in a stratocumulus cloud deck.
(b) A simple multi-affine stochastic model for the above, with comparable H; and C,. More specifically, we
generate a fractionally integrated standard cascade model,'® and a linear transformation is then applied in
order to fit the 1-point mean, variance and sign of skewness. This last procedure does not affect any of the
exponents considered here since they are based on increments or on small scale differences.
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use of such (Hj, C)-plots as simple universal tools in geophysical data analysis, whether
it be for a classification study when several datasets are involved or as a way to determine
the parameters of a stochastic model for a single dataset.?’ In Figs. 2(a) and 2(b) we
illustrate this last exercise in the case of cloud structure. Figure 2(a) shows a typical in situ
liquid water density probing described in more detail elsewhere?! and in Fig. 2(b) we see a
multi-affine two-parameter model.}®2® We are confident that many other applications will
be found.
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